0-R185 487 STRDNG CONSISTENCY OF M-ESTIMATES FOR_THE LINERAR MODEL - 1/1
U) PITTSBURGH UNIV PA CENTER FOR NULTWRRIRTE RNRLVSIS
R CHEN ET FlL JUL 87 TR-87-24 AFOSR-TR- 8?—
UNCLASSIFIED F49b20 -85-C 12/3 NL




LIRS
5
D,

o

,
e

o Oy,

> o

v
P

-~

Es

‘ 4
$
i

L)

) e tsl
( '
’ : A! ‘."..

Y

PI

A Naw

el
K ‘\‘; L)

bty

l"s.‘ R NA

A‘| "

rQ x.

\
.§
)

» 00
ﬂ":l “ G
&l“ 4

T
ERE AR o
) ll ¥ a

DL 0) 4
l 1,5 l. \C l. | ) |! 1“‘5
. L
IA“‘ , a '0 ‘
‘! '5‘, P ’h ’J‘ .

b.‘
a “.ag “0

AR

I

I
I

L 28 2.5
1.0 gl= k=
= u m‘zz

o

-

T

|||||

)
(&

|||||

B
Tt e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

O
qi!

| ‘t

z‘b

P

c"

R
g

\) ' ' OV
\ ‘t '4"‘. g'l. 'a' ‘v‘uh:.'a:
-‘ “x""&i
. ~—». .
.\v " \“ ‘A X 5.6

"..: 0) G'

‘l"'ﬁ\'n’ *‘!.

ﬁ ad ~‘

RN K SR TR Tt
:'l‘.?’:.%:‘:(: ) a.g l‘. l'.‘l‘y ) | t ) ‘z: AN 0l|‘i; ) :.. X . ,u . &
¥ Oy LI AL NP ~.J' .

M o
.. 'L-i;*;‘.i-..-.rd
ey ". \u brtiantyy

O )

I‘.‘i“‘\. .;. “‘i .t |O|“
“t § YN .\ ‘% s
‘ 100, l" 'J 'I“Q ) '|l ‘o
K \i T ,ﬁ -,‘\ M ‘3 A‘a Y, ! gl‘ .“ : p




Inclassified

H

SECUNITY CLAMSIFIC AYION UF TS BAGL (When Lare bntereu)

“ ] REPORT DOCUMENTATION PAGE B R ok
:: : . : 1. REPQRY‘NU“.lR 2. GOVTY ACCESSION NO.| 3. ARECIPIENT'S CATALOG NUMBER }
Q. - (NAFOSR-TR. 87%-097%1] -
.?' Tt ‘ 4 VITLE (and Subtitie} s. "C'j:uo' n-:our l-;IIIIOD covt_nzo.
. . n ;
o3 Strong consistency of M-estimates for the _Techaical - July 1987 '
3 BN linear model
!‘ m o 087P12R3l'onumc ORG. REPORT NUMBER
" ﬂ' AUTHOR®) . : 3. CONTRACT OR GRANT NUMBER(s)
)
h O X. R. Chen and Yeuhua Wu F49620-85-C-0008
B w PERFOAMING ORGANIZATION N OORESS 10. PROGRAM ELEMENT. PROJECT, TASK
N L Center for Multivaria e aTys1s AREA & WORK UNIT NUMBERS
. Fifth Floor Thackeray Hall ~ ~c A
0 I ? University of Pittsburgh, Pittsburgh, PA 15260 LIICAF 3204 AS
N 1 ) Air Force Office of 8¢ientific Research NIV 'S'U.r;'?gs;‘"
" Department of the Air Force -
;: < Bolling Air Force Base, DC 20332 FH@ O R -
l‘: - MONITORING ACENCY NAME & ADDRESS(!! diflerent (rom Coqirolling Ollice) 18. SECURITY CLASS. (ol this rppoyt)
' o : Unclassified
: e gy b :
N (3. \ 1V, DECLAS Kiiihcn:ou/oo-ucékomc
‘\ 16. DISTHIBUTION STATEMENT (of this Report)
Y
s Approved for public release; distribution unlimited
: 7. ou’rmap_non STATEMENT (ol the abdstract entered in Block 20, Il dillerent frem Report)
K}
',.
¥
K) 18. SUPPLEMENTARY NOTES
:
¥ D
’
N "
‘ ) Key words and phrases: M-estimate, linear model, strong consistency.
: .
- . W ABSTRACT (Connrinue an reverse side |l necesesry and identiiy by block numbder)
’ This article defines the M-estimate for the linear model directly
)
" from the minimization problem
* . q
AY, 'f ( lx ) : 1
p(Y;=~a-8 = min,
En =1 ! - \ (continued)
)
¢ '
E: . DD S5 1473 ‘ Unclassified

' P o . c l(.CUﬂITV cL ASIITICAT‘DON OF THIS PAGE (When Dase Entered) |
8¢ & 24 2290

he |

.
K, -
t,

) \
it ‘a‘&-‘.’—\‘o "noi."c" c‘! o". (AR AT



» .

_—. e ——— . - c-

. _Unclassified
. [ " SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

QU 20.( Continued)

o . ; o

A8 | Suppose that (X].Y ). ey (X ,Y ). .o. are {,.1.d. observations of a

'$0 ~ random vector (X,Y), where Y is one-dimensicnal and X may be multi-

dimensional. It is shown that the M-estimates ;n’ En defined in this

manner converge with probability one to gs 80 respectively ((ao,ea) is
%5‘ the true parameter) as n + =, under very general conditions on the

function p and the distribution of (X,Y).

MY n Unclassified
‘ . SECURITY CLASBIPICATION OF THIS PAGE(Phen Dais Bniered) . 4
o D e e =

- . " \ X OO0 ) i
KA N, VDR L J n;; g‘l.q nma‘. i I.,n,g, WS .V'Nl,!,i‘ ,u "“e-‘ n‘..o\.,t'., l!‘;:#“.:\!e t‘ s‘ t'r 0 \‘n "q‘!l.'!h'!h“”‘!!»":!z"h‘



AFOSR-TR. 87-097,

STRONG COMSISTENCY OF M-ESTIMATES
% - FOR THE LINEAR MODEL
)

B ’ X. R, Chen and Yeuhua Wu

0 - Center for Multivariate Analysis
University of Pittsburgh

) Center for Multivariate Analysis

R University of Pittsburgh

AOOCMS } K ‘v L A Y KO0 DA AGA £
'J"t-"‘z' 'u."'"‘l*.“"'é" O'...l.o -".N .0‘:‘0 g”:&\". !; e ,"’.“'.“-’s" ".;"

T Wy W) W B T VY " BAAOHOOONICA OO
s ettty '-'q?a’.'a'..‘“ ' s ote '_’4 ,"'},‘ a,"’,"j ¢ 'f";"'o'."!’ ‘l‘..’I‘?.‘!‘v"‘q.l“g".(‘l".q..




r T m———— T ———

STRONG COMSISTENCY OF M~ESTIMATES
FOR THE LINEAR MODEL

X. R. Chen and Yeuhua Wu

Center for Multivariate Analysis
University of Pittsburgh

e
July 1987 | fcenon For
LTS onagy -

Technical Report No, 87--24 ; SN E S R
| bt

e -
e,
{ D”'\ 'L.A
Center for Multivariate Analysis e
Fifth Floor Thackeray Hall » —
University of Pittsburgh Dist Au:;

Pittsburgh, PA 15260 i

*
Research sponsored by the Air Force Office of Scientific Research under
Contract F49620-85-C-0008. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes not-

withstanding any copyright notation hereon.

OG0 OO0
“t’v'nﬁ;.'{! . "..

O OOCHM) (i)
7-.‘..'};’_‘C,"h‘ﬂ,"!u’f\;;'."“



oo STRONG CONSISTENCY OF M-ESTIMATES
e FOR THE LINEAR MODEL

K X. R. Chen and Yeuhua Wu

i ABSTRACT

S This article defines the M-estimate for the linear model directly
(! from the minimization problem

‘
:ﬁé: E o(Y;-a=-8"'X;) = min.

i=1

ey ' Suppose that (Xl’Yl)’ cees (Xn,Yn), ... are i.i.d. observations of a
random vector (X,Y), where Y is one-dimensional and X may be multi-
R dimensional. It is shown that the M-estimates a_, & defined in this
0 manner converge with probability one to ags B respectively ((ao,Bé) is

e the true parameter) as n » «, under very general conditions on the

?5? function ¢ and the distribution of (X,Y).
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i - 1. INTRODUCTION
}?? —~ Let (X],Vi), cees (Xn,Yn), ... be i,i.d. observations of a random
o )
if vector (X,Y), where Y is one-dimensional and X may be multi-dimensional,
L
\‘.'
wx Suppose that the regression of Y to X, in some sense, 1s a 11near function
N " 2 |
;aa . Qex. It is desired tooest1mate tpgzppkpown parameters a 8@ by
ip* using the observations (X],Y\), cies (Xt Yk A much discussed class of
‘l.f" .
" estimates is the so-called M-estimate, which takes the solution of the -~ 7“7
Qﬂ minimization problem
‘E
a0 L
™ 7 L o(Y;~a-8'X,) = min (1)
b - L i i
o i=1
'!
?\; as the estimator. Here p is a properly selected function defined over
A~ - . /.. N
i R = (o). = e |
.|Q‘
- In literature, the case is often considered in which the Xi's are
W .
o supposed to be known constant vectors rather than observations of some
’.: random vector. But in many applications, especially in problems of econo-
O
) metrics, it is more practical to assume the random character of the Xi's
%
) A common feature of most works dealing with this estimation problem,
*‘J
D~ for example [2], [3] and [6], is to assume that o has a continuous deriva-
'y
) tive y everywhere over R', thus converting the minimization problem (1)
-..‘.
o to the problem of solving the system of equations
R
G n n
t‘,.. A} Y | - S‘ I | =
(Y, -a-8"X.) =0, X (Y, -a=-g"X;) = 0. (2)
= i i TN RARR i
. i=] i=1
i
:.3 In order to validate this procedure, one usually makes the assumption
'.
o that o is a convex function. These assumptions seem unduly restrictive
» for, in some important cases such as p(t) = |t| (Minimum L,-Norm estimate),
y

”
) L) 4
K ‘ URNA e' Q 3 li DL UAR fon o _.3'5“ - "’ oy, “1‘. At ke .‘.9 CHOE 0 '.-‘."1 "v.'?n‘ft-‘.*,\",'o‘f'-".'-‘.h‘.



p is not everywhere differentiable. Also, the convexity assumption ex-
cludes many functions with practical importance. For example,

o(t) = min{|t|,k} for some constant k > 0. In general, any function
bounded over R' is not allowed under this assumption.

So it makes much sense to tackle the estimation problem directly
starting from the minimization problem (1). Some works (for example,
(1], [4], [7]) have been done in this respect for the special case of
p(t) = |t|, but as far as the authors know, no work exists for general o
up to now.

The purpose of the present article is to study this problem in case
that the Xi's are observations of a random vector, To some extent our

method can also be employed to deal with the case in which the Xi's are

known nonrandom vectors, but some additional assumptions will be needed.
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i 2. FORMULATION OF THE RESULTS

;35 In the sequel we shall stick to the notations introduced in Section
§§ 1. We shall denote by (&n,én) a Borel-measurable solution of the minimi- I
X zation problem (1).

i%: We shall always impose the following conditions on the function
E,: 4 p and the random vector (X,Y):

2 a. p is continuous everywhere over R',

}: b. o is nondecreasing over (0,=) and nonincreasing over (-«,0).

¢,

22 From b it is seen that p(0) = min{p(t): t € R'}. Without losing
o generality, we may assume that

. c. o(0) =0, o(t)>0 onR'. (3)
_v d. Ep(Y-a-B'X) <= forany a € R', g ¢ RY. (4)
:H e. For any x € Rd, the function

P £ (8) = EGo(Y-0)[X = x) ()
n E attains its minimum uniquely at

:3 % T * 66x (&
-

3“ with ags By not depending on x.

fi? For convenience of reference, we shall call the set of conditions
.: {a, b, ¢, d, e} by "Condition (A)",

e

E;E THEOREM 1. Suppose that the following are true:

2 1. Condition (A).

pr 2. ol=) = p(-=) = =.

;’ 3. If |a| + ||8]| > O, then P(a+8'X = 0) < 1 where ||:]| is the

" Euclidean norm of 8.

g; Then we have as n + =,
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&n > ag, én > By,  A.S. (7)

The following theorem deals with the case that p may be bounded.

THEOREM 2. Suppose that the following are true:

1. Condition (A).

2. po(=) = o(-=).

3. If |a] + [|8]| > O, then P(a+8'X = 0) = 0.
Then (7) holds true.

Finally, we have the following theorem concerning the convergence

rate of @ and Bn.

THEOREM 3. Suppose that
1. The conditions of Theorem 1 or Theorem 2 are true.

2. For any a € R' and B8 € Rd

, the moment generating function of
p(Y-a-g'X) is finite in some neighborhood of zero (the neighborhood

may depend on a, B).

Then for arbitrarily given ¢ > 0, there exists constant ¢ > 0 inde-

pendent of n such that

P& ~agl > e) = 0™, P(|IE - 8ol > €) = 0(e™™) (8)

Before entering the details of the proof, we make some remarks
about the conditions of the theorems.

1. Condition b seems quite natural from the practical point of view.
As for the continuity assumption a, it also seems reasonable. This con-

dition can be weakened to some extent at the expense of a much stronger

condition on the distribution of (X,Y).
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" 2. Condition 3 of Theorem 1, in fact, is a consequence of e, Condi-

tion 3 of Theorem 2 holds when X possesses a density.

;?i 3. Condition e is closely related to the meaning of the regression.

> More clearly speaking, the exact meaning of the regression determines the

}4 class of functions o which can be used in formulating the minimization

& : problem (1). For instance, when g + Béx is the conditional median of Y

Y ' given X = x (median regression). We can choose o(t) = |t]|, or any p for
which E{p(Y-¢)|X = x} attains its minimum uniquely at the conditional

A median. Likewisely, when o+ B

]
o 0 0 )
given X = x, we can choose o{(t) = t°. An important case is that the

x is the conditional expectation of Y

conditional distribution of Y given X = x is symmetric and unimodal with
" center ag + Béx° In this case, p can be chosen as any even function

‘3 satisfying conditions a, b, d, and that o(t) > p(0) when t # 0.
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3. PROOF OF THE THEOREMS

We give the detailed proof of Theorem 1. An easy modification of
the argument enables us to prove the remaining two theorems.
The main body of the proof of Theorem 1 is contained in the follow-

ing two lemmas.

LEMMA 1. Suppose that the conditions of Theorem 1 are satisfied,

d+1

'H is a bounded closed set in R~ ', and (ao,sé) eM. Let (:n’én) be a

Borel measurable solution of the restricted minimization problem

o(Y, 'a"B'Xi) = min (9)

HNe~13

i=1
with (a,8') being restricted inH. Then as n + =, we have

G ags B> By A (10)

d+1

Denote by §R tne closed ball {(a,8'): ol + | BHZ §,R2} in RW .

(&n,é;) is the solution of the unrestricted minimization problem (1) as

as mentioned earlier,

LEMMA 2, Suppose that the conditions of Theorem 1 are satisfied,
then there exists constant R such that with probability one we have

(an,sn) e S, forn sufficiently large.

It is readily seen that Theorem 1 follows from these two lemmas.
Indeed, take H = §ﬁ, where R is the constant mentioned in Lemma 2,
Lemma 2 indicates that

~ al -~ ~ 1l ’ . . _
P((an,sn) = (an,en) for n sufficiently large =1,

which in turn entaiis

BB SAMSOEAGOONGONE (O LA ISt Pt AT P A TR R LT 1N
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?"" i " - > = { 2 - P - =

ot P(lim(a, - o) = 0, Lim(3 -8 ) 0)=1
3“' From this and Lemma 1, (7) follows.
A0
El
f:‘ Proof of Lemma 1. Without loss of generality, we may assume
)
;‘Q"; (10 =0, BO = 0,

ey i
B For any constant ¢ > 0, define
.

‘hh

' = [-2,2]d+],
t" .
i Take 2 large enough such that ' < A . Denote the T = 2d+]po1‘nts
A '
Rl ] . ey e
RS (£2, 22, ..., ¥2) by (a7, bq)s=oes (ar,bs). According to conditions b, c,
o it can easily be shown that
!
g T '
o 0 <ply-a-8'%x) < J o{y-a;=~b;x) (11)
] > - - 521 1 1
Y ”
- for any (x',y) € Rdﬂ and (a,B') € A Define

w’j.: Y i ’ L°

T
b Q{a,8) = Eo(Y-a-8'x). : (12)
,9'.
'f)"‘ By (11) and conditions a, d, it follows from the Lebesgue convergence
I‘Q
':::" . theorem that Q is continuous. By condition e it follows that

oo

W, Q(a,8) > Q(0,0), when |a| + ||8]] > O. (12)
.'"_.A
e Hence for arbitrarily given ¢ > 0, we have
e
‘:i:: q = 'inf{Q(Ot,B)i (asB') e(B' AE} = Q(an) > 0. (]4)
OO
ok

For any constant M > 0, denote by I M(X Y) the indicator of the set

R
:: A;, Choose ¢, € (0,9/4) and M > 0 'large enough such that
[}

.l

o fy

e PLIX',Y) € Ayl > 1 - e, (15)
?:i::: E[Iyo(Y-a-8'x)] < e forany (a,8') e@. (16)
n"<:

Y

.

ot

D TOCO) QL0
s el o i RN .,:: .n"n



The existence of such a constant M follows from condition d and (11),
KK Write those elements in {(X{,Y;), ..., (X ,¥ )} which fall into the
o set AM’ in the order of appearance, as

(X*:Y*)s coey (X* ’Y*’)l.
\J 1 1 n' n
X}v Evidently, these variables are conditionally i.i.d. given n', with the
N\

‘;f‘ common distribution (X,Y)|((X',Y) € AM)O Define the event
Bn = {n' > (] - ZE])n}.

N Then by (15) and the strong law of large numbers, it follows that with

o probability one Bn occurs for n sufficiently large. Put

e Qylas8) = E[(1 = L)o(Y-a-8'x)].

oM Then Q,, is continuous in «, 8, Find eé > 0 sufficiently small, such that
ot |Qy(a,8) = Qulas8)] < e

{ } when

= (o,8') e®,  (3,8) e®, la-al ey, llg-ell < el

Put

») @ = sup{]ly-a-b'xlz (x',y) € Ay, (a,b') e 1. (17)

~ Find €y > 0 sufficiently small such that

o sup{|p(r2)- p(r])|: |r]|.iG@, lrzlliﬂi, Irz- r]I <eyb <gq. (18)

o Find e; € (O,eé) such that

'»"-,J - o~

Y [(a+b'x) ~ (a+b'x)| < ¢, (19)
P when

(a,b') €B, (a,b') e®, la-af <eq BBl <eq0 x[l <M,

Choose a finite setQD] = {(ai,B;): i=1,....micH - AE,such that

.$$' for any (a,8') €H - AE there exists (ai,B;) e'TD1 satisfying

N P g ,
! > T Sty AT W 0 8T AT 0 VT
LRV LLROSI LR ’!’I&l‘- W, e-"s 3 ! '.‘;'!\ .%h'h‘n‘t‘! '!'l AN .':". u‘!‘e|..n"\'!'n‘!‘a""ﬂ,‘gk‘u’!‘u X
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‘;l.’ .i 10

..:,‘,,' lai -a| < €3> ||81- - BH < €3

) ' By the strong law of large numbers, with probability one we have

'
! 1 ¢ * LIV 4 1
LIS n 12] D(Y'l -aj- BJX1) > E[D(Y'aj = BJX)(] = IM)] = E]
Et' > Ep(Y - Gj'B:}X) - 29—]

gﬁb ‘ > Q(0,0) +q - 2y, Jj=T1,...,m (20)

secii for n sufficiently large. Hence with probability one

3

o (Y

l * byx n'
n ] i O(Y-’I-BX)T

1
n;oy 1 T3

-, =B X,
o5 - By 1)

v

.

1

2 (1 - 25])[Q<O,O) +q—2€'|]

He~13
o~

i

3 :,' [
l“,

ROLURINS,
A\

1]

Q(an) + n" J = 1,...,m (2])

'
LR

P

for n sufficiently large, where

.
o n' = (q-2))(1-2¢;) - 26,0(0,0).
>

L SO S

; Now choose arbitrarily (u,3') ¢ H - A_. Find (O‘j’BJ) e’ﬁ'] such that

N |aj_a[ < eq, IIBJ.-BII < €5. According to (18), (19), (21), we have

~

- - n' -
p(Y;-a-8"X) > 1_Z]O(Y’;-m-B'X;’)

e
ne~13

i=1

>
2
1;‘}
v
I~
©
—
-~
i
R
[}
w0
><
*
s

h
|v

n[Q(0,0) +n'} ~ n'e; > n[Q(0,0) + nl, (22)

‘:;;::c with probability one for n sufficiently large, where n = n' - €1

) W 0 Vil ) IR W MU MR N AR A AN
OB IR GOSN ARG ARR L o SOU RN
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ettt el o ey
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Choose €y > 0 sufficiently small such that n > 0. (22) should be under-
stood that it is true simultaneously for all (;,é') el - AE when (21) is

true. Therefore, with probability one we have

;N
min{= ] o(Y,

] 1-a-B'X1.): (a,8') €B - Ae} > Q(0,0) + n (23)
1:

for n sufficiently large.
On the other hand, by the strong law of large numbers, with proba-

bility one we have

3=
I~

[e(1) < Q(0,0) + (24)

i
for n sufficiently large. From (23), (24), it follows that

P(I&n| <€, ||BnH < e, for n sufficiently large) = 1,
This concludes the proof of Lemma 1.

al?

Proof of Lemma 2. MWrite S, = {{a,8"): | + ||B||2 = 1}, According

to condition 3 of Theorem 1, one can find ¢ > 0 such that

q = inf{P(|a + 8'X| > €): (a,8"') € S;} > O, (25)

Eind M sufficiently large, such that P(X ¢ AN) >1 - qg/4, Put
n = [3(1-+dM)]']. Choose a finite set §] c:S] in such a way so that

for any 6 € S, there exists 8 e §1 satisfying ||6 - éH < n., By (25) and

1
the strong law of large numbers, with probability one we have

#{i: 1<i<n, |a +B'Xi[ > ¢ for any (a,8') € S} > na/2 (26)

for n sufficiently large, where #(A) denotes the number of elements

of set A.
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By the strong law of large numbers, with probability one we have

LN #i: 1 < <n, X; e A > n(1-q/4). (27)

Choose a constant K such that

) qk/8 > Q(0,0) + 1

2 where the function Q is defined by (12). According to condition 2 of

‘%ﬁﬁ : Theorem 1, one can find h so that p(a) > K when |a| > h. Choose a
constant R large enough so that

£ eR/4 > h,

ey P([Y] < eR74) > 1 - q/8.

1 By the strong law of large numbers, with probability one we have
" #i: 1 < <n, |Y:] < eR/4} > n(1-4q/8). (28)

e Now choose arbitrarily a point (a,8') outside S,. We have
",. (a,8') = r(a,8'): r >R, (a,B') €5,.
;qﬂ Assume that (26)-(28) are true, then

§ﬁ} 1. If (a,6') € §], from (26) we have
il #{i: 1 <1 <n, la*+8'X.[ > Re} > ng/2. (29)
‘e From (28), (29), we obtain

#it 1 <i<n, |V, -a-8"X.| > 3Re/4} > 3nq/8. (30)

! ‘ 2. If (a,8') ¢ §], then choose (a*,2*') € §1 satisfying
y ja-a*| <n, |8 -e*]l <n,

W
E;; when |q*-+s*'xi| > ¢ and X, € Ay we have

T G+ B > e - [(a%-a) + (8- E)'Xy]
s Gl I

>e-n=-ndM> ¢/2,

v

¢ - far-al -]

fv

-
-
o
v
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0 Hence Ia~+s'xil > Re/2., From this, and (26)-(28), we get

.I

& #liz 1 <i<n, [Yi-a-8'X, [ > Re/4} > nq/8 (31)
[ ¥

b

" Summarizing these two cases, we see that with probability one,

)

B LI ;o

a2 moLoe(Yy-a-8'X) > qk/8 > Q(0,0) + 1

éﬁ i=1

v",‘ —

i holds simultaneously for all (a,r') outside Sp» When n is large enough.
"y Since (24) is true for n = 1, we see that with probability one

‘i'

hs

2 g0 . ez L 1T

_ mm{ﬁ'é p(Yi -a-8 Xi): (a,e") ¢ SR; > ﬁ_’ p(Y1) (32)
Ry i=1 i=]

™
,{ﬂ for n sufficiently large. Therefore

.3:2 P{(an,an) € SE for n sufficiently large} = 1 (33)
- which proves Lemma 2.

}:;
'."
cﬁz Procr o Theorem 2. Without loss of generality, assume ag = 0,

BO = 0. No change is needed in the proof of Lemma 1. For a proof of

e (73

>4

Lemma 2 under the conditions of Theorem 2, first note that Q(0,0) < L(«)

',
Ll

by conditions a, b, e and condition 2 of Theorem 2. From condition 3 of
i Theorem 3, it is readily seen that for any a < 1 there exists ¢ > 0 such
' that

i inf(P(Ja+g'X] > c): (5,8") € S} > a.

3 Starting from these two facts and employing the argument used earlier,

Y it can be shown that there exists constant R such that

=
>

. ] ' S
_ pig Lot ex) o e ror e 45,
c:.’ i=1
A

o

o simultaneously, when n large enough; = 1 (34)

A KR IIOSGAN IO D AN N N O AR P O vp e >
L T L R T ."‘xf,"ﬁ,’o' ‘;'v"t."-'i‘ -“l‘t’tin,":‘w‘ﬁo';‘q i‘-‘l‘.‘d’l-"ﬂ-‘\l'w-'u'r'l bt



where Q(0,0) < ¢ < L(=). From (34) we obtain (32), hence (33).

Proof of Theorem 3. The proof follows from the following two lemmas:

LEMMA 1'. Under the conditions of Theorem 3 for arbitrarily given
e > 0, there exists constant ¢ > 0 such that

e) = 0(e™M)

P(];n-aof

| v

v

P(I8, - 8yl > ) = 0(e™M)

where ;n’ §n are the same as in Lemma 1,

LEMMA 2'. Under the conditions of Theorem 3, there exist constants

R >0 and ¢ > 0 such that

a al ' - - -Ccn
P{(C’-n°0~09 Bn‘Bo) ¢ SR} = O(e ))

These lemmas can be proved by employing the argument used in proving
Lemma 1 and Lemma 2, with the help of the following fact (see [5], p.288):
Suppose that E1s Bos een is a sequence of i.i.d. random variables, Eg] =0
and € exp(tg]) <o for It] <&, 5 >0, then for arbitrarily given ¢ > 0

there exists constant ¢ > 0 such that

n
PILL e/l 2 e) - 0(e™M).
i=

T W N by T 1,54 t (AN T WAL D
’ EROAORBAT Y cbﬂ"‘“}'s'n‘(‘.."-‘t.,l'n‘i':‘,! WU s SRR LU UE LTIV AN

.-gfi'k’l'



15

! REFERENCES

[1] BLOOMFIELD, P. and STIEGER, W.L. (1983), Least Absolute Deviations,
Birkhduser,

[2] HUBER, P.J. (1973). Robust regression Ann. Statist. 1, 799-821.

[3] MARONNA, R.A. and YOHAI V.J. (1981). Asymptotic behavior of general
M-estimates for regression and scale with random carriers. 2. Wahrsch
Verw. Gebiete band 58, 7-20.

! [4] OBERHOFER, W. (1982). The cor<istency of nonlinear regression
minimizing the L]-normo Ann, Statist. 10, 316-319,

[5] PETROV, V.V. (1975). oSums o; Independent Random Variables. Springer-
Verlag, New York,

; [6] YOHAI, v.J. and MARONNA, R.A. (1979). Asymptotic behavior of
m-estimators for the linear model. Ann, Statict. 7, 258-268.

J (7] WU, Yeuhua (1987), Strong consistency and exponential rate of
. the "minimum L]-norm" estimates in linear regression models. Tech.
. Report. No. 87-18, Center for Multivariate Analysis, Univ. of Pittsburgh.
r

vl

W

o

,
N«
L

*

)

A

4

L4

4

4
o

X

q

A
K)
)

MmO TN e DN A R Rt T SR TTRIRY
RAUOUNRIAT RS AOADIEN A 1 AT WA e ,A.l_ 0GR LA R W




-

m
Z
v

ty
3y

*e

A

~.
N

>
&

T

. -
-

S
\

- o -

“ - @ . ' @ ® o @ @ . ,
LA ALY LR R ,c Vot AT AT, 48t o .u W, .l "l‘i 0‘.5 )
1'; "."’Ha“n v [ W "' LUTEMAINN ) A AOBON “ ".“
.y ; RS0 v % -' o w'.n‘ d’ c' AN AR RN s' c' L o $
) ‘| Ry S K \'. ,.' ‘. ‘l ! b ..l.‘.l ‘.ﬁ ¢y C l Q. 'i .

Wt ey 0'
v v Wt ‘u' ‘w 'Wea a‘.’ c"' " "'

*r

o'
) +
' u\ o
,n. .. e ‘.c’r .1“‘.‘ K a’”l'
* 0 ‘l‘ \u \ d WO
. TR A T i v



